Useful Conversion Factors for Blasters:

 

 

Official Metric Equivalents (according to U.S. and Canadian law):

 

1 inch (in.)    =    25.4 millimeters (mm)

 

1 pound (lb.) =    453.59237 grams (g)

 

 

Distance:

feet (ft)

x

0.3048

=

meters (m)

 

meters

x

3.2808

=

feet

 

 

 

 

 

 

Weight:

pounds (lbs)

x

0.4536

=

kilograms (kg)

 

kilograms

x

2.2026

=

pounds

 

 

 

 

 

 

Peak Particle

Velocity:

in/sec

x

25.4

=

mm/sec

 

mm/sec

x

0.3937

=

in/sec

 

 

 

 

 

 

Volume:

cubic yards (yd3)

x

1.308

=

cubic meters (m3)

 

cubic meters

x

0.7645

=

cubic yards

 

 

 

 

 

 

Powder Factor:

lbs/yd3

x

0.93

=

kg/m3

 

kg/m3

x

1.6863

=

lbs/yd3

 

 

 

 

 

 

Square Root

Scaled Dist:

ft/lbs1/2

x

0.45236

=

m/kg1/2

 

m/kg1/2

x

2.2106

=

ft/lbs1/2

 

 

 

 

 

 

Cube Root

Scaled Dist:

ft/lbs1/3

x

0.3965

=

m/kg1/3

 

m/kg1/3

x

2.5221

=

ft/lbs1/3

 

 

 

 

 

 

Pressure:

lbs/in2

x

0.145

=

Pascals

 

Pascals

x

6.895

=

lbs/in2

 

lbs/in2

x

.0000689

=

kilobars*

 

kilobars*

x

14504

=

lbs/in2

 

feet of water

x

0.434

=

lbs/in2

 

lbs/in2

x

2.31

=

feet of water

 

* 1 Bar  =  14.5 lbs/in2

 

 

 

 

        Other Miscellaneous Calculations:                        

 

 

                    Pounds of explosive loading per foot of borehole  =  D2  x  S.G.  x  0.34*

 

Where:                  D  =   explosive diameter (inches)

 

                              S.G.   =   specific gravity of

                                                  explosive in g/cc

 

                                *   The factor 0.34 is used to convert g/cc to lbs/cu ft and to calculate

                                           the volume of the explosive charge.  It is the result of the equation,

 

                                                                              0.7854  x 12  x  62.4

                                                                                      1728

 

          where:          0.7854 = ¼ of pi                                               

                              12 = the number of inches in a foot

                              62.4 = the weight of 1 cu ft of water

                                        in lbs (at approx. 45oF)

                              1728 = the number of cu in in a cu ft

 

 

 

 

                    Displacement of water in a borehole:               H  =  D2 / (D2 – De2)  x  h  

 

                                        Where:                  H  =   final height of water

 

                                                                      h  =   initial height of water

 

                                                                      D  =   hole diameter

 

                                                                      De  =   explosive cartridge diameter

 

                                      Determine H, the final height of water, and then divide H by the cartridge length

                                      to determine the number of cartridges that will be required to build out of the water.

 

 

 

 

                    Square Root Scaled Distance = Distance / Explosive Weight 1/2

 

 

                    Cube Root Scaled Distance = Distance / Explosive Weight 1/3

 

 

 

 

The following equations express the relationships between Velocity, Displacement, Frequency and Acceleration for sinusoidal waveforms:

 

 

                               Velocity (in/sec)  =  2 π  f  D

 

                             Velocity (in/sec)   =  386.1 Gs / (2 π f)

 

                             Displacement (inches)  =  V  /  (2 π f)

 

                             Acceleration (in/sec2)  =  2 π  f  V

 

                               Acceleration (in Gs)  =  (2 π  f  V) / 386.1

 

                               frequency (Hertz)  =  V / (2 π D)

 

                               frequency (Hertz)  =  A  / (2 π V)

 

                              = pi  =  3.14159…..)        

 

 

 

 

                    Cole’s Formula for determining peak pressure from an explosive

                              charge detonating underwater (assumed TNT or its equivalent):

 

 

                                             P  =  2.25 x 104 (W1/3 / R) 1.14

 

 

                                        Where:                  P  =  peak pressure in psi

 

                                                                      W =  explosive charge weight in pounds

 

                                                                      R  =  distance (in ft) from the detonating charge

 

 

 

 

                    Formula for estimating blast vibration:

 

 

                                                            PPV = K x (Distance / Weight1/2)-1.6

 

 

                                        Where:                  PPV = Peak Particle Velocity (in inches/second)

 

                                                                      K = factor that varies with ground conditions, powder factor,

                                                                                explosive confinement, etc.

 

                                                                      Distance = distance (in ft) from the detonating charge

 

                                                                      Weight = weight (in lbs) of the detonating charge

 

 

                                        Important:             When determining Weight, count all explosives detonating within

                                                                      any 8 millisecond time period.  Use the highest quantity found

                                                                      in the blast.

 

                                                                      Use a factor K that most closely approximates blast conditions.

                                                                      Lew Oriard indicated that K can range from a low of approximately24

                                                                      to a high of approximately 240.  The DuPont Blaster’s Handbook

                                                                      indicates that a K of approximately 160 would be average.  For blasts

                                                                      early in the program, use a number higher than normal.  Adjust it

                                                                      downward only after more experience (and confidence) is gained.

 

                                                                      The vibration regression factor -1.6 is the average that can be expected.

                                                                      It will be greater closer to the blast where body waves dominate and

                                                                      lower at large distances where surface waves dominate.

 

                                                                      Bear in mind that these are estimates only.  Results may vary considerably,

                                                                      depending upon local conditions and possible errors in measurement.

 

 

 

 

 

 

                                                                                          Golden West Chapter